Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping

نویسندگان

  • Qiang Shi
  • Changzheng Wang
  • Shuhong Li
  • Qingru Wang
  • Bingyuan Zhang
  • Wenjun Wang
  • Junying Zhang
  • Hailing Zhu
چکیده

UNLABELLED Undoped ZnO, Ce-doped ZnO, and (Li, Ce)-codoped ZnO nanophosphors were prepared by a sol-gel process. The effects of the additional doping with Li ions on the crystal structure, particle morphology, and luminescence properties of Ce-doped ZnO were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy and photoluminescence spectroscopy. The results indicate that the obtained samples are single phase, and a nanorod shaped morphology is observed for (Li, Ce)-codoping. Under excitation with 325 nm light, Ce-doped ZnO phosphors show an ultraviolet emission, a green emission, and a blue emission caused by Zn interstitials. The spectrum of the sample codoped with a proper Li concentration features two additional emissions that can be attributed to the Ce(3+) ions. With the increase of the Li doping concentration, the Ce(3+) blue luminescence of (Li, Ce)-codoped ZnO is obviously enhanced, which results not only from the increase of the Ce(3+) ion concentration itself but also from the energy transfer from the ZnO host material to the Ce(3+) ions. This enhancement reaches a maximum at a Li content of 0.02, and then decreases sharply due to the concentration quench. These nanophosphors may promise for application to the visible-light-emitting devices. PACS 78.55.Et; 81.07.Wx; 81.20.Fw.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visible emission from Ce-doped ZnO nanorods grown by hydrothermal method without a post thermal annealing process

Visible light-emitting Ce-doped ZnO nanorods [NRs] without a post thermal annealing process were grown by hydrothermal method on a Si (100) substrate at a low temperature of 90°C. The structural investigations of Ce-doped ZnO NRs showed that the Ce3+ ions were successfully incorporated into the ZnO lattice sites without forming unwanted Ce-related compounds or precipitates. The optical investig...

متن کامل

Time-resolved investigation of bright visible wavelength luminescence from sulfur-doped ZnO nanowires and micropowders.

Sulfur-doped zinc oxide (ZnO) nanowires grown on gold-coated silicon substrates inside a horizontal tube furnace exhibit remarkably strong visible wavelength emission with a quantum efficiency of 30%, an integrated intensity 1600 times stronger than band edge ultraviolet emission, and a spectral distribution that closely matches the dark-adapted human eye response. By comparatively studying sul...

متن کامل

Lasing mechanism of ZnO nanowires/nanobelts at room temperature.

ZnO has become the focus of photonics and optoelectronic research. We prepared pure Mn(II) doped ZnO nanowires with a controlled reduction reaction by carbon in an asymmetrical tube. Careful time-resolved photoluminescence experimental study indicates three types of lasing mechanisms: exciton-exciton interaction, bipolaronic exciton condensation, and plasma; these exist in different ZnO nanowir...

متن کامل

Investigation of the effect of amino-alcohol stabilizers on crystal structure, band gap and blue luminescence of Cu-doped ZnO nanoparticles prepared by sol-gel method

In this research, Zn0.97Cu0.03O nanoparticles are prepared by sol-gel method using various stabilizers (Mono, Di, and Tri-ethanolamine). The effect of stabilizers on the structural, morphological and optical properties of the nanoparticles were investigated. Study of X-ray diffraction pattern shows the hexagonal wurtzite structure of samples. The crystallite size, strain, stress, and deformatio...

متن کامل

Structural and Photoluminescence properties of Magnesium doped ZnO Nanoparticles

Undoped Zinc oxide (ZnO) nanoparticles as well as ZnO nanoparticles doped with Magnesium (Mg) were synthesized by wet chemical precipitation method using Zinc acetate and Magnesium acetate in Ethylene glycol and distilled water medium. The prepared nanoparticles were characterized with X-ray diffraction (XRD). The XRD patterns show the pattern of typical ZnO nanoparticles and correspond with st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014